Letter from 35 Scientists to U.S. Climate Leaders:
Prioritize Diversion of Biodegradable Waste from Landfills

October 29, 2021

Special Presidential Envoy for Climate John Kerry and National Climate Advisor Gina McCarthy,

As President Biden and the EU announce a Global Methane Pledge that aims to cut global methane pollution by at least 30 percent by 2030, we strongly urge policymakers to address methane emissions from the waste management sector through the diversion of biodegradable wastes from landfills. As a complementary measure, landfills must also be fitted with more stringent controls and subject to comprehensive monitoring.

According to current GHG inventories, landfills are the 3rd largest source of anthropogenic methane globally and in the United States. However, new data suggest that landfill emissions, and the opportunity to reduce them, are much greater. A series of recent studies, employing direct measurement of methane plumes via aircraft downwind of landfills, have shown that measured emissions average over twice the modeled emissions reported in current GHG inventories. Based on this growing set of data, landfill methane emissions are comparable to the methane emissions from the entire agricultural sector.

Addressing methane is critically important to combating climate change. Over a 20-year period, methane is over 80 times as potent as carbon dioxide and is the 2nd largest driver of anthropogenic climate change. According to the United Nations Environmental Programme (UNEP), “cutting methane is the strongest lever we have to slow climate change over the next 25 years.” In the near-term, reducing emissions of Short-Lived Climate Pollutants like methane is more effective than reducing CO₂. The newly released IPCC 6th Assessment Report notes that methane reduction “stands out as an option that combines near- and long-term gains on surface temperature and leads to air quality benefits by reducing surface ozone levels globally.”

Within the waste sector, the primary focus must be on the diversion of biodegradable organics from landfills. Diversion is the only approach that can avoid 100% of landfill methane. Establishing organics diversion infrastructure today will quickly reduce methane generation at the source. Conversely, delaying action only adds to our future methane debt. Today’s waste inevitably becomes tomorrow’s emissions. Diverting organics today breaks this cycle.

Technologies to divert biodegradable wastes from landfills are commercially available and in widespread use today. The extent of their existing use is, in large part, directly a result of public policy. While the relative merits of each of these technologies are beyond the scope of this letter, the severity and magnitude of the climate challenge will require a suite of solutions, each of which can be developed and applied in an environmentally protective manner.

Better control of methane emissions from landfills also is important, but not yet demonstrated as effective. California implemented the most stringent landfill gas control regulations to date, yet a team of NASA and university researchers still identified certain California landfills as “super-emitters” of methane, even while fully in compliance with the state’s strict rules. Additional controls on existing landfills should therefore be
focused on historically placed waste and organics which cannot be diverted and augmented with more accurate and comprehensive monitoring.

The time to act is now. Every year we delay a strong focus on the diversion of biodegradable wastes from landfills, we add to a growing burden of methane emissions to future generations.

Signed,

John Atkinson
Chair, Engineering Sustainability, Associate Professor, Environmental Engineering
State University of New York - University at Buffalo

Athanasios Bourtsalas
Lecturer, Energy and Materials, Earth and Environmental Engineering
Columbia University

Sally Brown
Research Professor
University of Washington

Tristan Brown
Associate Professor, Sustainable Resources Management
State University of New York, College of Environmental Science & Forestry

Rainer Bunge
Professor
ETH Zürich

Marco Castaldi
Professor, Chemical Engineering
City College of New York

Kartik Chandran
Professor, Earth & Environmental Engineering
Columbia University

Chris Cheeseman
Professor, Materials Resources Engineering
Imperial College London

Marian Chertow
Associate Professor, Industrial Environmental Management
Yale University

Steven Cohen
Professor, Public Affairs
School of International and Public Affairs
Columbia University

Greeshma Gadikota
Assistant Professor, Civil & Environmental Engineering
Cornell University

Nishant Garg
Assistant Professor, Civil & Environmental Engineering
University of Illinois at Urbana-Champaign

Thomas Graedel
Clifton R. Musser Professor Emeritus of Industrial Ecology
Yale University

Mario Grosso
Associate Professor, D.I.C.A. - Environmental Section
Politecnico di Milano

Qunxing Huang
Professor, Vice Dean, College of Energy Engineering
Zhejiang University

Zoltán Illés
Associate Professor, Department of Environmental Sciences and Policy
Central European University

Uta Krogmann
Professor, Environmental Engineering
Rutgers

Rakesh Kumar
Council of Scientific & Industrial Research
New Delhi

iv Total 2019 U.S. landfill methane emissions, as reported in U.S. EPA (2021) were 4.58 MMT CH4. On average, measured landfill emissions from recent data referenced herein were 2.3X greater than reported. Adjusting U.S. inventory with this factor yields total landfill emissions of 10.5 MMT CH4. Total agricultural sector emissions, inclusive of enteric fermentation, manure management, rice cultivation, and field burning of agricultural residues were 10.26 MMT CH4.

viii IPCC (2021)